首页> 外文OA文献 >Autonomous fault detection in self-healing systems:comparing Hidden Markov Models and artificial neural networks
【2h】

Autonomous fault detection in self-healing systems:comparing Hidden Markov Models and artificial neural networks

机译:自愈系统中的自主故障检测:比较隐马尔可夫模型和人工神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autonomously detecting and recovering from faults is one approach for reducing the operational complexity and costs associated with managing computing environments. We present a novel methodology for autonomously generating investigation leads that help identify systems faults. Specifically, when historical feature data is present, Hidden Markov Models can be used to heuristically identify the root cause of a fault in an unsupervised manner. This approach improvesthe state of the art by allowing self-healing systems to detect faults with greater autonomy than existing methodologies, and thus further reduce operational costs.
机译:自主检测故障并从故障中恢复是一种降低操作复杂性和与管理计算环境相关的成本的方法。我们提出了一种自动生成调查线索的新颖方法,以帮助识别系统故障。具体而言,当存在历史特征数据时,可以使用隐马尔可夫模型以无监督的方式启发式地确定故障的根本原因。该方法通过允许自愈系统以比现有方法更大的自主权来检测故障,从而改善了现有技术,从而进一步降低了运营成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号